jueves, 30 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PROBLEMAS 5

 En una planta pequeña de manufactura, el cautín que se muestra en la ilustración se utiliza para soldar las conexiones de un tablero vertical de grandes dimensiones. El año pasado se reportó que en este trabajo se habían producido varias lesiones músculo-esqueléticas además de muchas quejas por parte de los operadores. En general, parece ser que:

a) Resulta difícil ver el punto de aplicación cuando se está utilizando esta herramienta.

b) Los operadores sujetan innecesariamente la herramienta con mucha fuerza.

c) El cable de alimentación tiende a enredarse.

d) Los operadores se quejan de dolor en las muñecas.

Rediseñe el cautín con el fi n de eliminar los problemas mencionados anteriormente. Haga hincapié en la ergonomía u otras características especiales que usted haya incorporado a su diseño.

Cautin

martes, 28 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PROBLEMAS 4

 A continuación se muestran datos de dos configuraciones diferentes control-respuesta. Con base en dichos datos, ¿cuál es la relación C/R óptima para cada configuración? ¿Qué configuración (setup) considera que es la mejor? 

dos configuraciones diferentes control-respuesta

sábado, 25 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PROBLEMAS 3

 La Fundición Dorben utiliza una grúa con una cabeza magnética para cargar desperdicio de hierro en un horno de oxígeno. El operador de ella utiliza varias palancas con el fi n de controlar los tres grados de libertad que necesita la grúa y su cabeza magnética. Se utiliza un control para activar/desactivar el empuje magnético de la cabeza. El operador está ubicado en la parte superior de la operación mirando hacia abajo la mayor parte del tiempo. Los operadores se quejan con frecuencia de dolores en la espalda. La información sobre diversos controles por palanca disponibles en el mercado es la siguiente:
Palancas Disponibles en el Mercado

a) Diseñe un sistema de control apropiado para el operador de la grúa. Indique el número de controles necesarios, su ubicación (especialmente con referencia a la línea de vista del operador), su dirección de movimiento y su tipo de retroalimentación.

b) Exprese una relación control-respuesta apropiada para estos controles.

c) ¿Qué otros factores pueden ser de importancia para diseñar estos controles?

martes, 21 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PROBLEMAS 2

 Se le pide que diseñe un tablero de control/pantalla para el lanzamiento de escape de la NASA. Después del escape inicial, la propulsión se utilizará para desacelerar respecto al campo gravitacional terrestre. El paracaídas puede liberarse sólo dentro de un rango de altura reducido. Distribuya las siete pantallas/controles utilizando los cuadrantes del mismo tamaño que se muestran en el tablero de control que aparece en la tabla siguiente. Explique la lógica que siguió al realizar su distribución.

Lugar de trabajo, equipo y diseño de herramientas


jueves, 16 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PROBLEMAS 1

 1. Debido al desastre del Challenger, la NASA decidió diseñar un sistema de escape personal (es decir, un compartimiento de lanzamiento) para cada astronauta del transbordador espacial. En razón de que  el espacio es un factor de primordial importancia, el diseño antropométrico apropiado es un aspecto crucial. Asimismo, debido a restricciones presupuestales, el diseño debe ser no ajustable; es decir, el mismo diseño debe funcionar para todos los astronautas presentes y futuros, hombres y mujeres. Para cada una de las características del compartimiento de lanzamiento, indique la característica corporal utilizada en el diseño, el principio de diseño utilizado y el valor real (en pulgadas) que se empleará en su construcción.

Debido al desastre del Challenger, la NASA


martes, 7 de diciembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - PREGUNTAS

 1. ¿Cuál es el ancho que debe tener una silla para que satisfaga a 90% de los adultos?

2. Compare y contraste las tres diferentes estrategias de diseño.

3. Explique cómo se podría determinar adecuadamente la altura de la superfi cie de trabajo.

4. ¿Cuáles son las características críticas de una silla bien diseñada desde el punto de vista ergonómico? ¿Cuáles deben ser ajustables?

5. ¿Cuál es el principio en el que se basa el diseño de un asiento tipo montura?

6. ¿Qué es la lordosis y cómo se relaciona con el soporte lumbar?

7. ¿Cuál es el principio de diseño de los tapetes antifatiga?

8. ¿Cuál es el principio de diseño de la distribución adecuada de contenedores, partes y herramientas en una superficie de trabajo?

9. ¿Por qué es un accesorio tan importante en el lugar de trabajo? Haga una lista de tantas como le sea posible.

10. ¿A qué se refiere el principio de Warrick respecto al diseño de controles y pantallas?

11. ¿Cuál es la línea de vista óptima?

12. Elabore una lista de los tres principios que sustentan la distribución de los componentes en un tablero.

13. ¿Qué es el efecto de rango?

14. Haga una lista de los tres principios de la compatibilidad efectiva control-pantalla.

15. ¿Qué es la codificación operacional?

16. ¿Cuál es la desventaja principal de los controles táctiles?

17. ¿Cómo se le conoce al “movimiento de control sin respuesta del sistema”?

18. Si la relación C/R aumenta de 1.0 a 4.0, ¿qué pasa con el tiempo de recorrido, el tiempo de ajuste y el tiempo total?

19. ¿Cuáles son los tres factores más importantes de la tarea que conducen a desórdenes de trauma acumulativo?

20. ¿Cuál es el factor más importante que provoca el dedo blanco?

21. ¿Qué es el dedo de disparo?

22. Describa el progreso del estado de la enfermedad del síndrome del túnel carpal.

23. Diseñe un mango ergonómico e indique todos los principios que se deben utilizar en su diseño.

24. ¿Cuáles son las preocupaciones clave en el diseño de una herramienta automática?

martes, 30 de noviembre de 2021

Lugar de trabajo, equipo y diseño de herramientas - Resumen

 Muchos factores tienen un efecto significativo en la productividad y el bienestar del operador de una estación de trabajo. Es necesario aplicar la tecnología ergonómica más actual al equipo que se utiliza, así como también a las condiciones generales que rodean al área de trabajo. Además, se debe proporcionar una flexibilidad adecuada al lugar donde está el equipo y al ambiente de la estación de trabajo, de tal manera que se puedan satisfacer las variaciones en cuanto a altura, alcance, fuerza, tiempo de reflejos, etc., del empleado. Una mesa de trabajo que tenga 32 pulgadas (81 cm) de altura está muy bien para una trabajador de 75 pulgadas (191 cm), pero sería demasiado alta para un empleado de 66 pulgadas (167.6 cm). Las estaciones de trabajo y sillas con altura ajustable pueden satisfacer las demandas de un gran número de empleados, con base en más o menos dos desviaciones estándar con respecto a la norma. En la medida que se pueda ofrecer un centro de trabajo flexible que satisfaga a toda la variedad de trabajadores, serán mejores los resultados de productividad y la satisfacción del trabajador.

De la misma forma en que existen variaciones significativas en cuanto a altura y tamaño de la fuerza de trabajo, existen variaciones iguales o mayores de su capacidad visual, habilidad para oír, para sentir y su destreza manual. La gran mayoría de las estaciones de trabajo pueden mejorarse. La aplicación de los aspectos ergonómicos junto con la ingeniería de métodos dará como resultado ambientes de trabajo competitivos y más eficientes, que mejorarán el bienestar de los trabajadores, la calidad del producto, la facturación del negocio y el prestigio de la organización.

sábado, 20 de noviembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: UTILICE LAS BARRAS DE REACCIÓN Y LOS BALANCEADORES DE HERRAMIENTA EN LAS MÁQUINAS AUTOMÁTICAS

 Se deben proporcionar barras para el torque de reacción si el torque excede a 53 pulgadas⋅libra (6 N ⋅ m) en el caso de las herramientas alineadas que se utilizan para realizar una acción hacia abajo, 106 pulgadas ⋅ libra (12 N ⋅ m) para las herramientas de agarre tipo pistola que se utilizan en modo horizontal y 444 pulgadas⋅libra (50 N ⋅ m) para herramientas con ángulo recto que se utilizan en movimiento hacia abajo y hacia arriba (Mital y Kilbom, 1992).

Lista de verificación de detalles


Esta información se resume en una lista de verificación para la evaluación de herramientas (vea
la fi gura 5.34). Si la herramienta no cumple con las recomendaciones y características deseables,
debe rediseñarse o reemplazarse.

jueves, 18 de noviembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: SELECCIONE UNA MÁQUINA AUTOMÁTICA CON LAS CARACTERÍSTICAS APROPIADAS

 Las herramientas automáticas, tales como los colocadores utilizados para apretar tuercas se encuentran disponibles en el mercado en una gran variedad de configuraciones de mangos, diámetros de ejes, velocidades, pesos, mecanismos de apagado y salidas de torsión. Esta última se transfiere del motor hacia el eje a través de una gran variedad de mecanismos, de tal manera que la potencia (a menudo generada por medio de aire comprimido) pueda interrumpirse rápidamente una vez que la tuerca u otro sujetador estén apretados. El mecanismo más simple y barato es un controlador directo, bajo el control del operador, pero debido al tiempo prolongado que se necesita para liberar el disparador una vez que la tuerca se haya apretado, este tipo de controlador transfiere un torque de reacción muy grande hacia el brazo del operario. Los embragues de fricción mecánica permiten que el eje se deslice, lo que reduce, en parte, esta torsión de reacción. Un mecanismo más adecuado para reducir la torsión de reacción es el apagado mediante un flujo de aire, el cual sensa automáticamente cuándo se debe cortar el suministro de aire a medida que la tuerca se aprieta. Un mecanismo todavía más rápido es un embrague mecánico automático de apagado. Entre los mecanismos más recientes se puede mencionar el sistema hidráulico de pulsos, en el cual la energía rotacional proveniente del motor se transfiere a través de una unidad de pulsos que contiene un amortiguador de aceite (que filtra los pulsos de alta frecuencia, así como el ruido), y un sistema de pulsos eléctricos similar, los cuales reducen en gran medida el torque de reacción (Freivalds y Eklund, 1993).

Las variaciones de la torsión dada a la tuerca depende de varias condiciones, entre las que se destacan: las propiedades de la herramienta; el operador; las propiedades de la articulación, por ejemplo, la combinación del apretador y el material que está siendo apretado (el cual puede variar desde suave, en el cual los materiales cuentan con propiedades elásticas, como los paneles del cuerpo, hasta duro, en los que hay dos superficies rígidas, tales como las poleas de una grúa); y estabilidad del suministro de aire. El torque que experimenta el usuario (el torque de reacción) depende de dichos factores a los cuales se les suma el sistema de apagado del torque. En general, el uso de herramientas eléctricas a velocidades en rpm menores a las normales o la deficiente alimentación de las herramientas neumáticas, dan como resultado torques de reacción más grandes y valores más estresantes. Las herramientas tipo pulsadas generan los menores torques de reacción, quizá debido a que los pulsos cortos “reducen” el torque de reacción. Otros problemas potenciales son el ruido de los mecanismos neumáticos el cual alcanza niveles del orden de los 95 dB(A), niveles de vibración que excedan a los 132 dB(V) y el polvo o humos de aceite que emanan del escape (Freivalds y Eklund, 1993).

martes, 9 de noviembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: UTILICE LAS CONFIGURACIONES Y ORIENTACIONES APROPIADAS DE LAS HERRAMIENTAS AUTOMÁTICAS

En el caso de un taladro u otras herramientas automáticas, la función principal del operador consiste en sostener, estabilizar y supervisar la herramienta sobre una pieza de trabajo, mientras llevan a cabo el trabajo donde se requiere mayor esfuerzo. A pesar de que, en algunas ocasiones, el operador tenga que desplazar u orientar la herramienta, su función principal consiste en tomar y sostener la herramienta. Un taladro manual está compuesto por una cabeza, un cuerpo y un mango idealmente alineados. La línea de acción está representada por la línea del dedo índice extendido, lo cual significa que en un taladro ideal, la cabeza está descentrada respecto al eje central del cuerpo. 

 La configuración del mango es también un aspecto importante. Las opciones son la sujeción tipo pistola, en línea o en ángulo recto. Como regla general, las sujeciones en línea y en ángulo recto son las mejores para apretar hacia abajo sobre una superficie horizontal, mientras que las de tipo pistola son más adecuadas para apretar sobre una superficie vertical. En todos los casos, el objetivo es obtener una postura parada con la espalda recta, los brazos superiores colgados hacia abajo y la muñeca recta (vea la figura 5.33). Cuando se elige la sujeción tipo pistola, la posición del mango genera un ángulo de aproximadamente 78° con relación a la horizontal (Fraser, 1980).
Orientación apropiada
Otro factor importante es el centro de gravedad. Si está muy alejado hacia adelante respecto al cuerpo de la herramienta, se produce un momento giratorio, el cual deberá ser eliminado por los músculos de la mano y del antebrazo. Esta tarea extra implica un esfuerzo muscular adicional que se requiere para sostener, mantener en posición y presionar el taladro hacia la pieza de trabajo. El mango principal se coloca directamente por debajo del centro de gravedad, de tal manera que el cuerpo sobresalga por detrás del mango, así como también por el frente. Para perforaciones muy profundas, puede ser necesario instalar un mango de soporte secundario, ya sea en la parte lateral o de preferencia por debajo de la herramienta, de tal manera que el brazo de soporte pueda meterse en el cuerpo en lugar de ser abducido.

viernes, 5 de noviembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: UTILICE HERRAMIENTAS AUTOMÁTICAS TALES COMO COLOCADORES DE TUERCAS Y DESARMADORES EN LUGAR DE HERRAMIENTAS MANUALES

 Las herramientas eléctricas no sólo realizan el trabajo más rápido que las manuales sino que fatigan considerablemente menos al operador. Se puede esperar una mayor uniformidad en el producto cuando se utilizan herramientas eléctricas. Por ejemplo, un apretador automático puede colocar tuercas de manera consistente a una determinada presión en pulgadas-libras, mientras que no se puede esperar que un apretador de tuercas manual mantenga una presión constante de apretado debido a la fatiga.

Sin embargo, con ello se pierde algo. Las herramientas eléctricas y automáticas generan vibración, la cual puede producir el síndrome de los dedos blancos, cuyo primer síntoma es la reducción del fl ujo sanguíneo hacia los dedos y las manos debido a la vasoconstricción de los vasos sanguíneos.

Como resultado de ello se presenta una pérdida de retroalimentación sensorial y un desempeño aminorado. Además, esta condición puede contribuir al desarrollo del síndrome del túnel carpal, especialmente en trabajos que implican una combinación de movimientos fuertes y repetitivos. En general, se recomienda que se eviten vibraciones que se encuentren en el rango crítico de 40 a 130 Hz o ligeramente mayores (pero más seguro) entre 2 y 200 Hz (Lundstrom y Johansson, 1986). La exposición a la vibración puede minimizarse mediante la reducción de la fuerza de alimentación, el uso de mangos especialmente diseñados para amortiguarla (Anderson, 1990) o el uso de guantes que la absorben y un mejor mantenimiento con el fi n de reducir la falta de alineación o desequilibrio de los ejes.

domingo, 24 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: UTILICE LOS GUANTES CON CRITERIO

 Con frecuencia, los guantes se utilizan para manipular herramientas de mano por razones de seguridad y comodidad. Los guantes de seguridad son poco voluminosos, pero los que se usan en climas por debajo del punto de congelación pueden ser muy pesados e interferir con la facilidad de tomar los objetos. El uso de guantes de lana o piel puede aumentar en 0.2 pulgadas (0.5 cm) el grosor de la mano y 0.3 pulgadas (0.8 cm) el ancho de la mano hasta el dedo pulgar, mientras que las manoplas pesadas agregan 1 pulgada (2.5 cm) y 1.6 pulgadas (4.0 cm), respectivamente (Damon et al, 1966). Lo que es más importante, los guantes reducen la fuerza de agarre entre 10 y 20% (Hertzberg, 1973), la producción de torsión y los tiempos de desempeño de destreza manual. Los guantes de neopreno hacen 12.5% más lentos los tiempos de desempeño respecto al desempeño con las manos desnudas, la toalla 36%, el cuero 45% y el PVC 64% (Weidman, 1970). Se debe considerar como un intercambio entre una mayor seguridad y un menor desempeño con el uso de guantes.

lunes, 18 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: MANTENGA EL PESO DE LA HERRAMIENTA MENOR A LAS 5 LIBRAS

 El peso de la herramienta de mano determina cuánto tiempo se puede sostener o utilizar y con qué precisión puede manipularse. En el caso de las herramientas que se pueden sostener con una sola mano con el codo a 90° por periodos prolongados, Greenberg y Chaffi n (1976) recomiendan cargas de no más de 5 libras (2.3 kg). Además, la herramienta debe estar bien equilibrada, con el centro de gravedad tan cercano como sea posible al centro de gravedad de la mano (a menos que el propósito de la herramienta sea transferir fuerza, como es el caso de un martillo). Por lo tanto, los músculos de la mano y del brazo no necesitan oponerse a cualquier torsión que desarrolle una herramienta desequilibrada. Las herramientas pesadas que se utilizan para absorber impactos o vibraciones deben estar montadas sobre brazos telescópicos o balanceadores de herramienta con el fi n de reducir el esfuerzo que el operador necesita realizar. En el caso de las operaciones en las que se requiere precisión, no se recomiendan herramientas con pesos mayores a 1 libra, a menos que se utilice un sistema de contrapesos.

martes, 12 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE LA SUPERFICIE DE AGARRE DE TAL FORMA QUE SEA COMPRIMIBLE Y NO-CONDUCTORA

 Durante siglos, la madera fue el material preferido para fabricar los mangos de las herramientas. La madera se encuentra disponible en muchos lugares y se trabaja muy fácilmente. Tiene una buena resistencia contra los golpes y a la conductividad térmica y eléctrica y posee buenas cualidades de fricción, aun cuando se encuentre húmeda. Puesto que los mangos de madera pueden romperse y mancharse con grasa y aceite, en los últimos años se ha presentado un cambio signifi cativo al uso del plástico o, inclusive, del metal. Sin embargo, debe estar recubierto con hule o cuero con el fi n de amortiguar los golpes, reducir la conductividad eléctrica e incrementar la fricción (Fraser, 1980). 

Dichos materiales compresibles también amortiguan las vibraciones y permiten una mejor distribución de la presión, a la vez que reducen la fatiga y las tensiones en la mano (Fellows y Freivalds, 1991). Sin embargo, el material de sujeción no debe ser muy suave; de otra forma, los objetos puntiagudos tales como las rebabas metálicas, permanecerán en el mango y harán difícil la utilización de la herramienta. La superficie de agarre debe maximizarse con el fi n de garantizar la distribución de presión sobre un área lo mayor posible. La presión excesiva en un solo punto puede causar el dolor suficiente como para detener el trabajo que se esté realizando.

Las características de fricción de la superfi cie de la herramienta varían en función de la presión ejercida por la mano, el alisamiento y la porosidad de la superficie y el tipo de contaminación (Bobjer et al., 1993). El sudor incrementa el coeficiente de fricción, mientras que el aceite y la grasa lo reducen. La cinta adhesiva y las fundas de ante proporcionan una buena cantidad de fricción cuando hay humedad. El tipo de patrón de superfi cie, como lo defi ne la relación entre el área rugosa y el área ranurada, muestran algunas características interesantes. Cuando la mano se encuentra limpia o sudorosa, las fricciones máximas se obtienen cuando dicha relación es elevada (lo que maximiza el área de contacto superficie-mano); cuando la mano está contaminada, las fricciones máximas se obtienen cuando dicha relación es pequeña (lo cual maximiza la capacidad de eliminar los contaminantes).

domingo, 10 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE LOS MANGOS CON LA FORMA APROPIADA

 Para un agarre de fuerza, diseñe para la máxima superfi cie de contacto con el fi n de minimizar la presión unitaria de la mano. Por lo general, se piensa que una herramienta con sección transversal circular proporciona la torsión más grande. Sin embargo, la forma puede depender del tipo de tarea y de los movimientos involucrados (Cochran y Riley, 1986). Por ejemplo, la fuerza máxima de jalado y los mejores empujes se obtienen en realidad usando una sección transversal triangular. Para una manipulación de tipo rodante, la forma triangular es la más lenta. La forma rectangular (con las esquinas redondeadas) con relaciones ancho/altura de 1:1.25 a 1:1.5 parecen ser un buen intercambio.

Una ventaja adicional de la sección transversal rectangular es que la herramienta no rueda cuando se coloca sobre una mesa. Asimismo, los mangos no deben tener la forma de un cilindro perfecto, excepto en una sujeción de gancho. En el caso de las herramientas tipo desarmador, el extremo del mango debe ser redondo con el fi n de evitar presiones indebidas sobre la palma; en el caso de las herramientas tipo martillo, el mango puede tener un curvado plano, para indicar su extremo.

A partir de los mangos en forma circular cilíndricamente, Bullinger y Solf (1979) propusieron un diseño más radical utilizando una sección transversal hexagonal, en forma de dos conos truncados que se conectan en los extremos más largos. Dicha forma se amolda mejor a los contornos de la palma y del dedo en los agarres de precisión y de fuerza, y proporciona las torsiones más grandes en comparación con los mangos convencionales. Una forma cónica similar doblemente truncada fue desarrollada también para un mango de lima. En este caso, se pudo observar que la sección transversal totalmente redonda en forma de cuadrado era signifi cativamente superior a la mayoría de las formas convencionales.

Una nota final acerca de la forma es que los mangos en T ofrecen un torque mucho mayor (hasta 50% más) que los mangos rectos tipo desarmador. La inclinación del mango en T genera torsiones aún mayores a la vez que permite que la muñeca se mantenga derecha (Saran, 1973).

sábado, 9 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE UN ESPACIO DE AGARRE DE 3 PULGADAS PARA LAS HERRAMIENTAS CON DOS MANGOS

 La fuerza de sujeción y la tensión resultante en los tendones flexores de los dedos varían en función del tamaño del objeto que se desee tomar. Con un dinamómetro con mangos que formen un ángulo hacia adentro, se logra una máxima fuerza de sujeción en aproximadamente 3 a 3.2 pulgadas (7.68.1 cm) (Chaffi n y Anderson, 1991). A distancias diferentes respecto a la óptima, el porcentaje de fuerza de sujeción disminuye (vea la fi gura 5.31), como se define en la siguiente fórmula:



donde S es el rango de agarre dado menos el rango de agarre óptimo (3 pulgadas en el caso de las mujeres y 3.2 en el caso de los hombres). En dinamómetros con lados paralelos, este rango óptimo disminuye de 1.8 a 2 pulgadas (4.5 a 5 cm) (Pheasant y Scriven, 1983). Debido a la gran variación de las capacidades individuales en cuanto a fuerza y a la necesidad de satisfacer a la mayoría de la población laboral (es decir, el 5o. percentil de mujeres), los requisitos de sujeción máxima deben limitarse a menos de 20 libras. Un efecto similar se puede encontrar en la fuerza de precisión (vea la figura 5.32). Sin embargo, la fuerza de precisión total está a un nivel mucho más reducido (aproximadamente 20% del agarre de fuerza) y el espacio de precisión (para una presión medular en 4 puntos) varía de 0.5 a 2 pulgadas (1.3 a 5.1 cm) y después se reduce significativamente para rangos mayores (Heffernan y Freivalds, 2000).

viernes, 8 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE EL LARGO DE LOS MANGOS CON UN MÍNIMO DE 4 PULGADAS

 Tanto en el caso de mangos como de cortes, debe haber espacio suficiente para que quepan los cuatro dedos. El ancho de la mano a lo largo de los metacarpianos varía entre 2.8 pulgadas (7.1 cm) para el 5° percentil de las mujeres y 3.8 pulgadas (9.7 cm) para el 95avo. percentil para los hombres (Garrett, 1971).

Por lo tanto, 4 pulgadas (10 cm) pueden ser un mínimo razonable, pero 5 pulgadas (12.5 cm) puede ser un valor muy recomendable. Si la sujeción está encerrada o si se utilizan guantes, se recomienda tener un espacio más grande para sujetar la herramienta. Para un agarre de precisión externa, el mango de la herramienta debe ser lo suficientemente largo para poder ser soportado en la base del primer dedo o el dedo pulgar. En el caso de un agarre de precisión interna, la herramienta debe extenderse más allá de la palma, pero no tanto como para que golpee la muñeca (Konz y Johnson, 2000).

jueves, 7 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE MANGOS DE 1.5 PULGADAS DE DIÁMETRO PARA AGARRES DE FUERZA

 Los agarres de fuerza alrededor de un objeto cilíndrico deben encerrar completamente la circunferencia del cilindro, con los dedos y el pulgar apenas tocándose. Para la mayoría de las personas, esto representa un diámetro del mango de aproximadamente 1.5 pulgadas (3.8 cm), lo que genera una actividad ECM mínima, un deterioro mínimo del tiempo de sujeción y fuerzas máximas de empuje.

En general, el extremo superior del rango es mejor para una torsión máxima, y el extremo inferior es mejor para una mayor destreza y velocidad. El diámetro del mango para agarres de precisión debe ser de aproximadamente 0.5 pulgadas (1.3 cm) (Freivalds, 1996).

martes, 5 de octubre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: UTILICE LOS DEDOS MÁS FUERTES PARA TRABAJAR: EL DEDO MEDIO Y EL PULGAR

 A pesar de que el dedo índice es por lo común el que puede moverse más rápido, no es el más fuerte (vea la tabla 5.7). Cuando se trate de una carga relativamente pesada, en general resulta más eficiente el uso del dedo medio o una combinación del dedo medio y del índice.



martes, 28 de septiembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: EVITE EL MOVIMIENTO DACTILAR REPETITIVO

 Si el dedo índice se utiliza de manera excesiva para operar disparadores, se desarrollarían síntomas del dedo disparador. Las fuerzas del disparo deben minimizarse lo más posible, de preferencia por debajo de 2 libras (0.9 kg) (Eastman Kodak, 1983), para reducir la carga en dicho dedo. Son preferibles los controles operados por dos o tres dedos (vea la fi gura 5.30); los controles de banda dactilar o la barra de sujeción de fuerza es aún mejor, ya que requieren el uso de más dedos más fuertes. En la tabla 5.7 se muestran las fuerzas absolutas de fl exión de los dedos y sus contribuciones relacionadas con la sujeción.

Cuando se debe utilizar una herramienta de dos mangos, un mecanismo a base de resortes evita que los dedos tengan que regresar la herramienta a su posición inicial. Además, se debe evitar un elevado número de repeticiones. A pesar de que los niveles críticos de las repeticiones no se conocen, NIOSH (1989) demostró que existen elevados índices de desórdenes de músculo y tendón en los trabajadores que exceden 10 000 movimientos diarios.

viernes, 24 de septiembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: DISEÑE LAS HERRAMIENTAS DE TAL MANERA QUE PUEDAN SER EMPLEADAS CON CUALQUIER MANO POR LA MAYORÍA DE LAS PERSONAS

 Alternar manos hace posible que se reduzca la fatiga muscular total. Sin embargo, en muchas situaciones, esto no es posible, ya que las herramientas están diseñadas para usarse con una mano. Además, si se diseña para usarse con la mano que el usuario prefiera, que para 90% de la población es la derecha, el resto, o sea 10%, quedaría inconforme. Buenos ejemplos de herramientas diseñadas para diestros que no pueden ser utilizadas por personas zurdas son el taladro con el mango lateral sólo en el lado izquierdo, la sierra circular y el cuchillo dentado diseñado para ser sólo de un lado. Por lo general, los hombres diestros muestran 12% de reducción de fuerza en la mano izquierda, mientras que las mujeres diestras padecen 7% de reducción de fuerza. Sorprendentemente, tanto los hombres como las mujeres zurdas tienen casi la misma fuerza en ambas manos. Una conclusión es que las personas zurdas son obligadas a adaptarse a un mundo diseñado para los diestros (Miller y Freivalds, 1987).

La fuerza de agarre de la mujer varía entre 50 y 67% respecto a la de los hombres (Pheasant y Scriven, 1983). Por ejemplo, se puede esperar que el hombre promedio ejerza aproximadamente 110 libras (50 kg) mientras que la mujer promedio lo hará en alrededor de 60 libras (27.3 kg). Las mujeres tienen una desventaja doble: una menor fuerza de sujeción y un menor alcance promedio. La mejor solución consiste en ofrecer una amplia variedad de tamaños de herramientas.



miércoles, 22 de septiembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: EVITE LA COMPRESIÓN DE LOS TEJIDOS

 A menudo, cuando se trabaja con herramientas manuales, la mano aplica una fuerza considerable. Dichas acciones pueden concentrar una fuerza de compresión de magnitud considerable sobre la palma de la mano y los dedos, lo que puede dar como resultado isquemia, esto es, la obstrucción del flujo sanguíneo hacia los tejidos y el entumecimiento y hormigueo de los dedos. Los mangos deben estar diseñados con grandes superfi cies de contacto con el fi n de distribuir la fuerza sobre un área grande (vea la figura 5.29) o para dirigirla hacia áreas menos sensibles, tales como el tejido entre el dedo pulgar y el dedo índice. De manera similar, se deben evitar las ranuras o grietas en los mangos de las herramientas. Debido a que las manos pueden variar mucho en cuanto a tamaño, dichas ranuras sólo le serán útiles a una pequeña fracción de la población.


miércoles, 15 de septiembre de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: HERRAMIENTAS - MANTENGA LA MUÑECA ESTIRADA

 A medida que la muñeca se mueve respecto a su posición neutral, se presenta una pérdida de fuerza en el agarre. Comenzando en una posición neutral de la muñeca, la pronación reduce 12% la fuerza de sujeción, 25% la fl exión/extensión y 15% la desviación radial/anular (vea la fi gura 5.27). Además, las posiciones no naturales de las manos pueden dar como resultado dolores en las muñecas, pérdida de fuerza de agarre y, si se mantienen por mucho tiempo, la ocurrencia del síndrome del túnel carpal. Para reducir este problema, el lugar de trabajo o las herramientas se deben rediseñar con el fin de permitir que la muñeca siempre esté en una posición recta; por ejemplo, colocar más abajo la superficie de trabajo y las orillas de los contenedores e inclinar las agarraderas hacia el usuario. De manera similar, el mango de las herramientas debe reflejar el eje de la empuñadura, el cual está a aproximadamente 78° respecto a la horizontal y debe estar orientado de tal forma que el eje de la herramienta esté alineado con el dedo índice; ejemplos de lo anterior son los mangos de las pinzas para doblar y el cuchillo de sujeción de pistola (vea la fi gura 5.28).





jueves, 26 de agosto de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: HERRAMIENTAS - REALICE MOVIMIENTOS DE TORCIDO CON LOS CODOS FLEXIONADOS

 Cuando el codo está extendido, los tendones y músculos del brazo se estiran y, por lo tanto, producen poca fuerza. Cuando el codo se encuentra flexionado 90° o menos, los bíceps tienen una buena ventaja mecánica y pueden contribuir al giro del antebrazo.

jueves, 19 de agosto de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: HERRAMIENTAS - EVITE LA CARGA MUSCULAR ESTÁTICA DURANTE PERIODOS PROLONGADOS

 Cuando se utilizan herramientas en situaciones en las que es necesario levantar los brazos o sostener las herramientas por periodos prolongados, los músculos de los hombros, brazos y manos pueden cargarse estáticamente, lo cual trae como consecuencia la fatiga, una menor eficiencia laboral y dolor. La abducción de los hombros, con la correspondiente elevación de los codos, se presentará si el trabajo debe realizarse con una herramienta de sujeción tipo pistola sobre un lugar de trabajo horizontal. Una herramienta en línea o recta reduce la necesidad de levantar el brazo y también hace posible una postura neutral de la muñeca. El trabajo prolongado con los brazos extendidos, como es el caso de tareas de ensamble realizadas con fuerza, pueden producir dolor en el antebrazo. Cambiar la distribución del lugar de trabajo de tal manera que se mantengan los codos a 90° elimina la mayor parte del problema (vea la figura 5.4). De forma similar, mantener activado de manera continua un interruptor de activación puede producir fatiga de los dedos así como reducir la flexibilidad.



sábado, 14 de agosto de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: HERRAMIENTAS UTILICE UN AGARRE DE FUERZA PARA LAS TAREAS QUE REQUIERAN FUERZA Y AGARRE DE PRECISIÓN PARA AQUELLAS QUE REQUIERAN PRECISIÓN - El agarre de precisión

 El agarre de precisión se utiliza para control o precisión. Cuando se utiliza este tipo de sujeción, el artículo se sostiene entre los extremos distales de uno o más dedos y el dedo pulgar contrario (el dedo pulgar a veces se omite). La posición relativa del dedo pulgar y los otros dedos determina cuánta fuerza puede aplicarse y proporciona una superficie sensorial para recibir la retroalimentación necesaria para lograr la precisión que se necesita. Existen cuatro tipos básicos de agarres de precisión, con muchas variaciones (vea la fi gura 5.26): 1) presión lateral, cuando el dedo pulgar se opone a la parte lateral del dedo índice; 2) presiones en la punta de dos y tres puntos (o pulpo), en las que la punta (o base de la palma) del dedo pulgar se opone a las puntas (o bases de la palma) de uno o más dedos (en el caso de objetos cilíndricos relativamente pequeños, los tres dígitos actúan como un mandril, lo cual resulta en una sujeción de mandril); 3) presión de la palma, cuando los dedos se oponen a la palma de la mano sin que participe el dedo pulgar, como es el caso del transporte de una parabrisas de vidrio, y 4) presión con los dedos, cuando los pulgares así como lo demás dedos ejercen presión sobre una superficie, como si trabajadores de la industria de la confección alimentaran tela en una máquina de coser. Un agarre especializado es una sujeción de precisión externa o de escritura, esto es, una combinación de una fuerza lateral con el dedo medio y una fuerza en dos puntos para sostener al dispositivo de escritura (Konz y Johnson, 2000).

Una clasificación y jerarquización completa de los tipos de agarre se puede encontrar en Kroemer (1986). Observe la fuerza signifi cativamente reducida de los agarres de presión en comparación con los agarres de fuerza (consulte la tabla 5.6). Nunca se debe aplicar fuerzas de gran magnitud a las sujeciones de presión. 


martes, 10 de agosto de 2021

PRINCIPIOS DEL DISEÑO DE TRABAJO: HERRAMIENTAS UTILICE UN AGARRE DE FUERZA PARA LAS TAREAS QUE REQUIERAN FUERZA Y AGARRE DE PRECISIÓN PARA AQUELLAS QUE REQUIERAN PRECISIÓN

 La aprehensión de la mano puede defi nirse básicamente como las variaciones del agarre entre dos extremos: un agarre de fuerza y un agarre de presión. En el agarre de fuerza, la empuñadura cilíndrica de la herramienta, cuyo eje es más o menos perpendicular al antebrazo, se mantiene en sujeción por los dedos fl exionados parcialmente sobre la palma. El dedo pulgar ejerce una presión en sentido opuesto, que se superpone ligeramente con el dedo medio (vea la fi gura 5.26). La línea de acción de la fuerza puede variar según 1) la fuerza paralela al antebrazo, como cuando se serrucha; 2) la fuerza a un determinado ángulo respecto al antebrazo, como cuando se martilla; y 3) la fuerza que actúa en el brazo de palanca, que crea una torsión con relación al antebrazo, como cuando se usa el desarmador. Como su nombre implica, el agarre de fuerza se utiliza para ejercer fuerza o para sujetar objetos pesados. Sin embargo, a medida que los dedos o el dedo pulgar se desvían respecto al agarre cilíndrico, se produce una menor fuerza pero es mayor la precisión que puede ofrecerse. Por ejemplo, si se sostiene un martillo ligero como cuando se está clavando, el dedo pulgar puede desviarse con relación a la oposición de los dedos para alinearse con el mango. Si el dedo índice también se desvía del eje de la herramienta, como cuando se sostiene un cuchillo para realizar un corte preciso, este tipo de agarre se asemeja a una sujeción de presión, con la hoja presionada entre el dedo pulgar y el dedo índice. En ocasiones, este agarre se denomina agarre de precisión interna (Konz y Johnson, 2000). Una sujeción mediante un asa, que se utiliza para sostener una caja o una agarradera, es un agarre de fuerza incompleto en el que no se aplica la fuerza opuesta del dedo pulgar, y, por ende, se reduce de manera considerable la fuerza de sujeción disponible.

lunes, 2 de agosto de 2021

DESÓRDENES DE TRAUMA ACUMULATIVO - La tendosinovitis Parte 5

 Un ejemplo (vea la fi gura 5.25) analiza el estrés CTD en el que se incurre en una operación de corte altamente repetitiva que se describe con mayor detalle en el ejemplo 8.1. Tanto el factor de frecuencia de 1.55 como el factor de fuerza de 2.00 exceden el umbral de seguridad de 1.0, lo cual da como resultado un valor total de riesgo de 1.34, que también supera a 1.0. Por lo tanto, el método más eficaz consiste en reducir la frecuencia mediante la eliminación o combinación de movimientos innecesarios (los cuales pueden o no ser factibles) y la reducción de la componente de la fuerza mediante la modificación del agarre utilizado (la base del cambio de métodos del ejemplo 8.1).

El índice CTD ha demostrado ser muy exitoso en la identifi cación de trabajos que producen lesiones, pero funciona mucho mejor en bases relativas más que en absolutas, por ejemplo, en trabajos críticos de ordenamiento por rango. Observe que el índice de riesgo CTD también sirve como una lista de verificación útil para identificar posturas muy deficientes y como una herramienta de diseño para seleccionar las condiciones clave para el rediseño.




miércoles, 7 de julio de 2021

DESÓRDENES DE TRAUMA ACUMULATIVO - La tendosinovitis Parte 4

 Para evaluar el nivel de problemas relacionados con los CTD en una planta, el analista de métodos o ergonomista típicamente comienza con un estudio de los trabajadores con el fi n de determinar su estado de salud e incomodidad durante la realización de sus labores. Una herramienta que se utiliza muy a menudo para este propósito es el diagrama de incomodidad del cuerpo (Corkett y Bishop, 1976; vea la figura 5.24), mediante el cual el trabajador evalúa el nivel de dolor o incomodidad en varias partes del cuerpo, en una escala del 0 (sin dolor) a 10 (casi máximo). La escala de evaluación se basa en la escala de valores por categoría (CR-10) de Borg (1990) con las anclas verbales que se muestran en la figura 5.24.

Un método más cuantitativo es el nuevo procedimiento de análisis de riesgos de los CTD que agrega los valores del riesgo de los tres factores causales más importantes en un solo resultado (vea figura 5.25; Seth et al., 1999). Un factor de frecuencia está determinado por el número de movimientos dañinos para la muñeca, que después son puestos en una escala con un valor de umbral de 10 000.

El factor de la postura se determina a partir del grado de desviación respecto a la postura neutral de los principales movimientos de las extremidades superiores. El factor fuerza se determina a partir del porcentaje relativo de la fuerza muscular máxima que se ejerce para realizar la tarea, y después se pone en una escala de 15%, el máximo valor permitido para contracciones estáticas extendidas (vea el capítulo 4). Un factor misceláneo final incorpora una gran variedad de condiciones que pueden jugar un papel en las causas de los CTD, como la vibración y la temperatura, los cuales se ponderan de manera adecuada y después se suman para determinar un índice fi nal de riesgo al CTD. En condiciones relativamente seguras, dicho índice debe ser menor a 1 (parecido al índice de levantamiento del NIOSH, capítulo 4). 



sábado, 3 de julio de 2021

DESÓRDENES DE TRAUMA ACUMULATIVO - La tendosinovitis Parte 3

El dedo de disparo es una forma de tendonitis que resulta de una situación de trabajo en la que la falange distal del dedo índice debe doblarse y flexionarse contra la resistencia antes de que se flexionen las falanges más próximas. Las fuerzas isométricas excesivas producen un ranurado en el hueso, o se agranda el tendón debido a una inflamación. Cuando el tendón se mueve dentro de la vaina, puede sacudirse o producir un sonido audible. El dedo blanco es consecuencia de una excesiva vibración de las máquinas herramienta, lo que provoca la constricción de las arteriolas dentro de los dedos. La falta de flujo sanguíneo resultante se manifiesta como un palidecimiento de la piel, con la correspondiente pérdida del control motor. Un efecto similar, que puede presentarse como resultado de una exposición al frío, se llama síndrome de Raynaud. Una muy buena introducción a éstos y otros CTD se pueden consultar en Putz-Anderson (1988).

 No todas las incidencias son traumáticas. Se ha observado también que la fatiga e incomodidad de corto plazo son resultado de un pobre manejo y una defi ciente orientación del martilleo así como de una forma inadecuada de la herramienta y mala altura del trabajo cuando se realizan tareas con desarmadores. Por lo general, un mal diseño de las manijas de una herramienta provoca que se deban ejercer elevadas fuerzas de sujeción y extremas desviaciones de la muñeca, lo que da como resultado una mayor fatiga (Freivalds, 1996). 


martes, 25 de mayo de 2021

DESÓRDENES DE TRAUMA ACUMULATIVO - La tendosinovitis Parte 2

 La tendosinovitis, uno de los CTD más comunes, consiste en la infl amación de las capas de los tendones y se debe al uso exagerado de las herramientas o a la falta de costumbre en el uso de herramientas diseñadas inadecuadamente. Si la infl amación se esparce hacia los tendones, se convierte en una tendonitis. A menudo esta lesión la experimentan los aprendices expuestos a grandes desviaciones del cúbito, en unión con la supinación de la muñeca. Los movimientos repetitivos y los impactos de choque pueden agravar aún más esta condición. El síndrome del túnel carpal es un desorden de la mano provocada por una lesión del nervio medio dentro de la muñeca. La fl exión y extensión repetitiva de la muñeca en condiciones de estrés puede causar infl amación en las capas de los tendones.

Dichas capas, al detectar una fricción elevada, segregan más fl uido para lubricar las capas y facilitar el movimiento de los tendones. La acumulación de fl uido resultante aumenta la presión en el túnel carpal, la cual a su vez comprime el nervio medio. Entre los síntomas se incluye la lesión o pérdida de la función nerviosa en los primeros tres dedos y medio, que se manifi esta como entumecimiento, hormigueo, dolor y pérdida de destreza. De nueva cuenta, el diseño apropiado de las herramientas es muy importante para evitar estas posiciones extremas de la muñeca. Las desviaciones radiales extremas de la muñeca son consecuencia de la presión entre la cabeza del radio y la parte adjunta del húmero, lo que da como resultado el codo de tenista, una forma de tendonitis. De manera similar, la extensión simultánea de la muñeca junto con la pronación total, es igualmente tensionante en el codo.

domingo, 9 de mayo de 2021

DESÓRDENES DE TRAUMA ACUMULATIVO Parte 1

 El costo de los desórdenes músculo-esqueléticos relacionados con el trabajo como, por ejemplo, los desórdenes de trauma acumulativo (Cumulative trauma disorders CTD) en la industria de Estados Unidos, a pesar de que no todos son consecuencia de un diseño del trabajo inadecuado, es demasiado elevado. Los datos del Consejo de Seguridad Nacional (2003) sugieren que entre 15 y 20% de quienes trabajan en industrias clave (empacadoras de carne, procesamiento de aves, ensamblado de automóviles y manufactura textil) corren el riesgo de sufrir CTD y 61% de todas las lesiones ocupacionales están asociadas con movimientos repetitivos. La industria más afectada es la manufacturera, mientras que el peor puesto ocupacional es el de carnicero con 222 quejas de CTD por cada 100 000 trabajadores. Con estos índices tan elevados y con costos de servicio médico promedio de 30 000 dólares por caso, el NIOSH y la OSHA se han enfocado en la tarea de reducir los índices de incidencia de las lesiones músculo-esqueléticas relacionadas con el trabajo como uno de sus objetivos principales.

Los desórdenes de trauma acumulativo (a menudo llamados lesiones por movimiento repetitivo o desórdenes músculo-esqueléticos relacionados con el trabajo) son lesiones del sistema músculoesquelético que se desarrollan gradualmente como resultado de microtraumas repetitivos debidos a un pobre diseño y al excesivo uso de herramientas de mano y otros equipos. Como tienen un lento nacimiento y a la naturaleza relativamente apacible de la lesión, a menudo son ignoradas hasta que se vuelven crónicas y se presentan lesiones más severas. Estos problemas representan una gran variedad de problemas, entre ellos desórdenes por movimientos repetitivos, estrechamiento del túnel carpal, tendonitis, ganglionitis, tenosinovitis y bursitis, términos que, con frecuencia, se utilizan de manera intercambiable.

Cuatro factores principales relacionados con el trabajo parecen ser los que generan el desarrollo de CTD: 1) fuerza excesiva, 2) movimientos no naturales o de los extremos de las articulaciones, 3) gran número de repeticiones y 4) duración del trabajo. Dentro de los síntomas más comunes asociados con el CTD se incluyen: dolor, limitaciones de los movimientos de las articulaciones e inflamación del tejido blando. En las primeras etapas pueden existir algunos signos visibles; sin embargo, si los nervios están afectados, pueden dañarse las respuestas sensoriales y el control de movimientos.

Si no es tratado, los CTD pueden provocar una incapacidad permanente.

La mano humana es una estructura compleja de huesos, arterias, nervios, ligamentos y tendones. Los dedos están controlados mediante los músculos carpio extensor y carpio flexor del antebrazo. Los músculos están conectados a los dedos mediante tendones, los cuales pasan a través de un canal en la muñeca, formado por los huesos de la parte trasera de la mano de un lado y por el ligamento carpiano transverso del otro lado. A través de dicho canal, llamado túnel carpal, también pasan varias arterias y nervios (vea la fi gura 5.22). Los huesos de la muñeca se conectan a los dos huesos largos del antebrazo, el cúbito y el radio. El radio está conectado al lado del dedo pulgar de la muñeca mientras que el cúbito se conecta al lado del dedo meñique. La orientación de la articulación de la muñeca permite el movimiento en dos planos, a 90° entre sí (vea la fi gura 5.23). El primero permite la flexión y la extensión mientras que el segundo hace posible la desviación del cúbito y el radio. Asimismo, la rotación del antebrazo puede dar como resultado una pronación con la palma hacia abajo o una supinación con la palma hacia arriba.




sábado, 8 de mayo de 2021

ASEGÚRESE DE LOGRAR LA COMPATIBILIDAD APROPIADA ENTRE LOS CONTROLES Y LAS PANTALLAS

 La compatibilidad se defi ne como la relación entre los controles y las pantallas que es consistente con las expectativas humanas. Los principios básicos incluyen la asequibilidad, la propiedad percibida que da como resultado la acción deseada; la ubicación, la evidente relación entre los controles y las respuestas; y la retroalimentación, de manera que el operador sepa que la función ha sido lograda.

Por ejemplo, una buena asequibilidad es una puerta con una manija que se jala para abrirla o una puerta con una placa que se presiona para abrirse. La ubicación espacial se ofrece en estufas bien diseñadas. La compatibilidad de movimientos es proporcionada mediante la acción directa del controlador, lecturas de escalas que aumentan de izquierda a derecha y movimientos en el sentido de las manecillas del reloj que incrementan los parámetros. En pantallas circulares, la mejor compatibilidad se logra con una escala fi ja y una pantalla con indicador móvil (vea la sección 7.4). En las pantallas verticales u horizontales, el principio de Warrick, sostiene que los indicadores más cercanos a la pantalla y al control que se mueven en la misma dirección ofrecen la mejor compatibilidad (vea la figura 5.19). En controles y pantallas ubicados en planos diferentes, un movimiento en el sentido de las manecillas del reloj para los incrementos y la regla de la mano derecha (la pantalla avanza en la dirección del movimiento de un tornillo o control de mano derecha) son los más compatibles. En controles tipo varilla de un controlador directo, el mejor método es obtener resultados hacia arriba en movimientos hacia arriba (Sanders y McCormick, 1993).

Los principios del diseño del trabajo de máquinas y equipo se resumen en la lista de verificación para la evaluación de las máquinas (fi gura 5.21). El analista puede encontrar esta lista de mucha utilidad cuando desee evaluar y diseñar máquinas y otros equipos.


viernes, 7 de mayo de 2021

CODIFICACIÓN DE LA INFORMACIÓN: PRINCIPIOS GENERALES DE DISEÑO - LIMITACIONES DE LOS JUICIOS ABSOLUTOS

 La tarea consistente en diferenciar entre dos estímulos a lo largo de una dimensión particular depende ya sea de un juicio relativo, si se puede hacer una comparación directa de los dos estímulos, o de un juicio absoluto, en caso de que ello no sea posible. En el último caso, el operador debe utilizar la memoria de trabajo para retener un estímulo y hacer la comparación. Como ya se analizó, de acuerdo con la regla de Miller, la capacidad de la memoria de trabajo está limitada a alrededor de 7 ± 2 caracteres. Por lo tanto, una persona puede identifi car, en el mejor de los casos, de cinco a nueve caracteres con base en un juicio absoluto. La investigación ha demostrado que esto es válido para una gran cantidad de dimensiones: cinco niveles de tonos puros, cinco niveles de volumen, siete niveles de tamaño del objeto, cinco niveles de brillantez y hasta una docena de colores. Por otro lado, las personas pueden identifi car hasta 300 000 colores diferentes con base en el uso de relaciones cuando los han comparado dos a la vez. Si se utilizan múltiples dimensiones (por ejemplo, la brillantez y el color), el rango puede incrementarse hasta cierto punto, pero menor al que se esperaría de la combinación (producto directo) de las dos dimensiones de código (Sanders y McCormick, 1993).


miércoles, 5 de mayo de 2021

CODIFICACIÓN DE LA INFORMACIÓN: PRINCIPIOS GENERALES DE DISEÑO - SELECCIÓN DE LAS DIMENSIONES APROPIADAS

 La información puede codificarse en una gran variedad de dimensiones. Es necesario seleccionar una dimensión apropiada para las condiciones dadas. Por ejemplo, si se van a utilizar lámparas, se puede seleccionar el brillo, color y frecuencia de pulsado como las dimensiones con las cuales codificar la información. De manera similar, si se va a utilizar sonido, se pueden seleccionar dimensiones como la intensidad sonora, el tono y la modulación.

lunes, 3 de mayo de 2021

CODIFICACIÓN DE LA INFORMACIÓN: PRINCIPIOS GENERALES DE DISEÑO - MODALIDAD DE PANTALLA

 Como el ser humano tiene cinco sentidos diferentes (vista, oído, tacto, gusto y olfato), puede haber cinco modalidades diferentes de despliegue de información que pueda reconocer el operador. Sin embargo, puesto que la vista y el oído son, en gran medida, los sentidos más desarrollados y los que más se utilizan para recibir información, por lo general la elección generalmente se limita a estos dos. La selección de cuál de los dos utilizar depende de una gran variedad de factores, cada uno de los cuales posee ciertas ventajas así como desventajas. En la tabla 7.1 se muestran las comparaciones correspondientes a detalle, las cuales pueden ser de ayuda cuando el ingeniero industrial debe seleccionar la modalidad apropiada para las circunstancias dadas.

La estimulación del tacto o táctil es de gran utilidad principalmente para diseñar controles, los cuales se analizan más a fondo en la sección 5.3. El gusto se utiliza en una variedad de circunstancias muy limitada, una de las cuales sirve para determinar cuándo una medicina está en “mal estado” y evitar que los niños la consuman accidentalmente. De forma similar, los olores son utilizados en el sistema de ventilación de las minas con el fi n de avisar a los mineros acerca de emergencias o en los sistemas de gas natural con el fi n de avisar al propietario de una casa sobre la existencia de fugas en su estufa.


miércoles, 28 de abril de 2021

CODIFICACIÓN DE LA INFORMACIÓN: PRINCIPIOS GENERALES DE DISEÑO - TIPO DE INFORMACIÓN A PRESENTAR

 La información que a presentarse puede ser estática o dinámica, dependiendo de si cambia o no con el paso del tiempo. El primer caso incluye cualquier texto impreso (aun el que aparece en la pantalla de la computadora), gráfi cas, tablas, etiquetas o diagramas que no cambian. El segundo caso incluye cualquier información que tenga que ser actualizada de manera continua como la presión, la velocidad, la temperatura o las luces de estado. Cualquiera de estas dos categorías puede clasificarse también como

■ Cuantitativa: presenta valores numéricos específi cos (por ejemplo, 50 °F, 60 rpm).

■ Cualitativa: indica valores o tendencias generales (por ejemplo, arriba, abajo, caliente, frío).

■ Estado: refl eja una condición de entre un número limitado de éstas (por ejemplo, encendido/ apagado, alto/precaución/adelante).

■ Advertencias: indican emergencias o condiciones inseguras (por ejemplo, una alarma contra fuego).

■ Alfanuméricas: usan letras o números (por ejemplo, signos, letreros).

■ Representativa: uso de dibujos, símbolos y colores para codifi car la información (por ejemplo, “cesto de basura” en el caso de los archivos eliminados).

■ En fase: uso de señales pulsadas, las cuales varían en duración e intervalos entre señales (por ejemplo, el código Morse o las luces intermitentes).

Observe que una pantalla de información puede incorporar varios tipos de información de manera simultánea. Por ejemplo, una señal de paro es una advertencia estática que utiliza letras alfanuméricas, una forma octagonal y el color rojo como una representación de la información.

lunes, 26 de abril de 2021

Lista de verifi cación de la evaluación del trabajo cognitivo

 


domingo, 25 de abril de 2021

CODIFICACIÓN DE LA INFORMACIÓN: PRINCIPIOS GENERALES DE DISEÑO

 Como se mencionó en la introducción al capítulo 4, una gran cantidad de funciones u operaciones, si no es que la mayoría, las llevan a cabo máquinas debido a consideraciones de mayor fuerza, precisión y repetitividad. Sin embargo, para garantizar que estas máquinas trabajen de manera satisfactoria, esto es, que cubran las especifi caciones que se desean, siempre será necesaria la intervención del ser humano para que las supervise. El operador encargado de dicha función recibe una gran variedad de información (por ejemplo, la presión, la velocidad, la temperatura, etc.) la cual tiene que ser presentada de una manera o forma que pueda ser fácilmente interpretada y que tenga pocas probabilidades de ser errónea. Por lo tanto, existe una gran cantidad de principios de diseño que ayudan al ingeniero industrial a proporcionar al operador la información apropiada.

martes, 20 de abril de 2021

RECURSOS DE ATENCIÓN Parte 3

 Para realizar un análisis más detallado acerca de la carga de trabajo mental y las ventajas y desventajas de las diferentes formas para medirlo, consulte Wickens (1984), Eggemeier (1988) y Sanders y McCormick (1993).

Un ejemplo final de los recursos de la atención se relaciona con la habilidad que tiene un operador (por ejemplo, un inspector visual) de mantener la atención y permanecer alerta por periodos prolongados. Conocida con el nombre de atención sostenida o vigilancia, el problema radica en cómo minimizar la reducción de vigilancia que se presenta después de un periodo de 30 minutos y se incrementa hasta 50% cuando aumenta el tiempo (Giambra y Quilter, 1987; vea la fi gura 7.8).

Desafortunadamente, existen muy pocas contramedidas documentadas que dan resultado en el caso de tareas industriales. El método básico consiste en tratar de mantener un alto nivel de alerta, el cual mantiene el desempeño de acuerdo a la curva en U invertida de Yerkes-Dodson (1908) (vea la figura 7.9). Este estado puede lograrse si se ofrecen periodos de descanso más frecuentes, se rediseñan las tareas, se da más retroalimentación a los trabajadores acerca del desempeño de la detección y se utilizan los niveles de estimulación apropiados, ya sea internos (por ejemplo, cafeína) o externos (por ejemplo, música o ruido blanco) o aun a través de la introducción de falsas señales. Sin embargo, este último cambio del criterio de detección también incrementará la aparición de falsas alarmas (vea el análisis acerca de la teoría de la detección de señales) con los costos asociados correspondientes. El incremento de la prominencia de la señal ayuda a detectar el desempeño (es decir, hace que la señal sea más brillante, grande o que tenga un mayor contraste mediante iluminación especial). Puede ser de gran utilidad el uso de cubiertas que actúan como patrones especiales que se utilizan para mejorar las diferencias entre la parte defectuosa y el resto del objeto. Por último, la selección de inspectores con un mayor tiempo de fi jación de la vista y mejor visión periférica también ayuda a que la inspección sea mejor (Drury, 1982).

Para ayudar al ingeniero industrial a evaluar y rediseñar las tareas cognitivas, los detalles que se mencionaron acerca del sistema de procesamiento de información del ser humano se resumen en la Lista de verifi cación de la evaluación del trabajo cognitivo (vea la figura 7.10).


jueves, 8 de abril de 2021

RECURSOS DE ATENCIÓN Parte 2

 Es necesario que las tareas se realicen de la manera más disímil posible en términos de las demandas exigidas a la etapa de procesamiento de la fi gura 7.1. Mientras que una tarea de ensamblado manual sólo con instrucciones auditivas puede llevarse a cabo sin problemas, un músico que esté afi nando un instrumento tendrá problemas para escuchar comentarios verbales. Un método muy exitoso para explicar el desempeño del tiempo compartido con tareas múltiples es el modelo de recursos múltiples de Wickens (1984).

Una extensión de los modos de atención a múltiples recursos se relaciona con la medida de la carga de trabajo mental o las demandas que se le imponen al procesador de información del ser humano.

Una definición utiliza la relación de los recursos que se requieren y los recursos disponibles, donde el tiempo es uno de los más importantes entre la gran cantidad de recursos que se necesitan.

En los ejemplos que se mencionaron anteriormente, el ensamblado simple puede ser una tarea que consuma mucho tiempo, pero no demanda en particular recursos cognitivos. Por otro lado, el control del tráfico aéreo, en horas pico, puede ser una tarea muy demandante. En realidad, puede ser muy difícil cuantifi car las demandas impuestas al operador. Algunos de los métodos que se utilizan para cuantificarlas son las siguientes:

■ Las medidas de la tarea principal pueden ser el tiempo que se requiere para llevar a cabo la tarea dividido entre el tiempo total disponible, o el número de artículos terminados por unidad de tiempo. El problema de este método es que el tiempo compartido de algunas de estas tareas es mejor que el de otras.

■ La medición de la tarea secundaria utiliza el concepto de capacidad de reserva que, si no está directamente relacionada con el desempeño de la tarea principal, será utilizada por la tarea secundaria (tiempo de reacción a la elección), la cual puede ser controlada y más fácilmente medida. El problema de este método es que, por lo general, la tarea secundaria parece artificial e intrusiva y que es difícil identificar la forma en que el operador asigna prioridades al desempeño de ambas tareas.

■ Se piensa que las medidas fi siológicas (por ejemplo, la variabilidad del ritmo cardiaco, el movimiento de los ojos, el diámetro de las pupilas, los electroencefalogramas) responden al estrés impuesto por la carga de trabajo mental; a pesar de que por lo general no interfi eren con el desempeño de la tarea principal, el equipo necesario para medirlas lo puede hacer.

■ Se piensa que las medidas subjetivas agregan todos los aspectos de la carga de trabajo mental en un valor general simple (o en un promedio ponderado en varias escalas). Desafortunadamente, los reportes subjetivos no siempre refl ejan con precisión el desempeño real; también la

motivación puede afectar signifi cativamente los valores.


martes, 30 de marzo de 2021

RECURSOS DE ATENCIÓN Parte 1

Los recursos de atención o, en términos más sencillos, la atención, se refi ere a la cantidad de capacidad cognitiva que se dedica a una tarea en particular o etapa de procesamiento. Dicha cantidad puede variar de manera considerable desde tareas de ensamble rutinarias y bien practicadas con reducidas demandas de atención hasta tareas relacionadas con el control de tráfi co aéreo que exigen un elevado nivel de atención. Además, esta capacidad cognitiva puede aplicarse de una forma muy directa, como en un punto específi co de una parte en particular del sistema de procesamiento de información del ser humano llamada atención enfocada, o, de una manera mucho más difusa a varias o a todo el sistema de procesamiento de información del ser humano, lo cual se llama atención dividida. Un ejemplo de la atención enfocada en la memoria de trabajo se podría presentar mientras un operador trata de recordar un código de procesamiento de consulta mientras lo ingresa en una máquina herramienta controlada por computadora. El enfoque de la atención puede mejorarse si se reduce el número de fuentes de información en competencia o las demandas del sistema de procesamiento de información del ser humano o si se separan dichas fuentes de la manera más distinta posible. 

Por otro lado, cuando un inspector clasifi ca manzanas en una banda transportadora, divide su atención entre la percepción visual de los defectos y tamaños de las manzanas, la toma de decisiones acerca de la naturaleza del defecto y el tamaño de la manzana, con referencia a la memoria y a las imágenes almacenadas a partir del entrenamiento que recibió, y los movimientos de las manos para quitar las manzanas dañadas y clasificar por tamaño las que están en buen estado en los contenedores apropiados. A este último caso consistente en realizar varias tareas de manera simultánea también se le conoce como multitarea o compartición del tiempo. Debido a que los recursos cognitivos de la atención están relativamente limitados, la compartición de tiempo entre varias tareas probablemente dará como resultado un deterioro del desempeño de una o más tareas en comparación con una sola de ellas. De nuevo, puede resultar complejo mejorar el desempeño de la tarea en dichas situaciones, pero también se utilizan estrategias similares como las que se estudiaron en el caso de la atención enfocada. El número y grado de difi cultad de las tareas debe minimizarse.

miércoles, 24 de marzo de 2021

Ejemplo Ley de Fitts y procesamiento de información del movimiento

 Fitts (1954), que aplicó la teoría de la información al modelado del movimiento del ser humano, fue quien desarrolló el índice de difi cultad para predecir el tiempo de los movimientos. Este índice se definió en función de la distancia del movimiento y el tamaño del objetivo en una serie de movimientosposicionales hacia y desde objetivos idénticos:



En una aplicación particularmente exitosa de la ley de Fitts, Langolf, Chaffi n y Foulke (1976) modelaron el movimiento humano realizado por diferentes extremidades a lo largo de un gran número de distancias, incluyendo objetivos muy pequeños, visibles sólo con la ayuda de un microscopio.

Sus resultados (vea la fi gura 4.14) arrojaron pendientes de 105 ms/bit para el brazo, 45 ms/bit para la muñeca y 26 ms/bit para el dedo. El valor inverso de la pendiente se interpreta, de acuerdo con la teoría de la información, como el ancho de banda de sistema motor. En este caso, los anchos de banda fueron de 38 bits/s para el dedo, 23 bits/s para la muñeca y 10 bits/s para el brazo. Esta reducción de las velocidades de procesamiento de información se explicó como resultado del procesamiento adicional de las articulaciones, músculos y unidades motoras. Como un detalle interesante, estos resultados son idénticos a la clasifi cación de movimientos de Gilbreth (vea la sección 4.2).

martes, 23 de marzo de 2021

Ejemplo: Procesamiento de información del ser humano en una tarea de cableado

 Un buen ejemplo de la cuantificación de la cantidad de información procesada en una tarea industrial fue presentado por Bishu y Drury (1988). En una tarea simulada de cableado, los operadores movían un punzón hacia la terminal o ubicación sobre un tablero de control, conformado por cuatro placas diferentes, cada una de las cuales tenía ocho posibles componentes. Cada área de componentes estaba dividida en 128 terminales con un arreglo de ocho columnas y 16 filas. La tarea más compleja involucraba las cuatro placas (log2 4 = 2 bits de información), los ocho componentes (3 bits), ocho columnas (3 bits) y 16 filas (4 bits) todo lo cual constituía una complejidad total de 12 bits (suma de 2, 3, 3 y 4). A partir de este panel de control, se pueden construir otros de menor complejidad mediante la reducción del número de placas, componentes, columnas y fi las. Una tarea de baja complejidad sólo involucra dos placas (1 bit), cuatro componentes (2 bits), cuatro columnas (2 bits) y 8 fi las (3 bits) para dar una complejidad total de 8 bits (la suma de 1, 2, 2 y 3). También se consideraron otras tareas de complejidad intermedia.

Los resultados finales mostraron una relación lineal entre el tiempo de procesamiento de la información (cableado simulado o colocación) y la complejidad de la información de la entrada (vea la figura 7.6). Mediante el uso de la ley Hick-Hyman, esta relación puede expresarse como 

Por lo tanto, a medida que aumenta el número de alternativas para realizar la tarea, también reincrementa la carga informacional en la unidad central de proceso del operador humano así como el
tiempo correspondiente del desempeño de la tarea. Observe que en este caso de la vida real de una
tarea compleja, la intercepción no siempre es un valor positivo correspondiente al simple tiempo de
reacción.

lunes, 22 de marzo de 2021

EJECUCIÓN DE LA RESPUESTA Parte 2

 



viernes, 5 de marzo de 2021

Teoría de la detección de señales aplicada a la inspección de vidrio - Caso 4: Sensibilidad incrementada.

 La sensibilidad puede calcularse como la diferencia del valor de z de la misma abscisa de ambas curvas, de la señal y del ruido (fi gura 7.3):

d ′ = z (falsas alarmas) – z (éxitos)


Si la señal puede aislarse mejor de ruido, la probabilidad de éxitos aumentará (por ejemplo, hasta un valor de 0.90), mientras que la probabilidad de falsas alarmas permanecerá en un valor bajo (por ejemplo, 0.10). Mediante el uso del criterio como punto de comparación, la probabilidad de éxitos es de 0.90 con un valor correspondiente de z de –1.283 y una ordenada de 0.175. La probabilidad de falsas alarmas es de 0.10 con un valor correspondiente de z de 1.283 y una ordenada de 0.175. Por lo tanto, la sensibilidad se calcula como,


Debido al incremento de la sensibilidad, hay un mejor desempeño para identifi car partes defectuosas.

A veces, la tasa de éxitos se grafi ca contra la tasa de falsas alarmas con el fi n de obtener una curva característica del operador receptor en la cual la desviación de la curva respecto a la pendiente de 45 grados indica la sensibilidad.

En el estudio del caso de Drury y Addison (1973), se recolectaron datos semanales respecto a la inspección del vidrio a partir de los cuales se calculó el valor de d ′. Un cambio en la política de inspección consistente en proporcionar retroalimentación al inspector general más rápidamente dio como resultado que se incrementara d ' de un valor medio de 2.5 a uno de 3.16, lo cual representa un incremento de 26% en la sensibilidad a lo largo de 10 semanas (vea la fi gura 7.4). Esto representó un incremento de 60% de la relación señal a ruido (es decir, de beta) y una reducción de 50% de la probabilidad de no detectar un defecto.



martes, 2 de marzo de 2021

Teoría de la detección de señales aplicada a la inspección de vidrio - Caso 3: Inspector arriesgado.

Un inspector arriesgado (figura 7.3c) establece el criterio alejado hacia la izquierda, lo cual incrementa la probabilidad de éxitos (por ejemplo, 0.95) a expensas de una elevada probabilidad de falsas alarmas (por ejemplo 0.70). En este caso, para la curva de la señal, una probabilidad de 0.95 da una z de 1 – 1.645 y una ordenada de 0.103. En el caso de esta curva de ruido, una probabilidad de 0.70 nos da una z de – 0.524 y una ordenada de 0.348. Beta, entonces, se convierte en 0.296 (0.103/0.348).




sábado, 27 de febrero de 2021

Teoría de la detección de señales aplicada a la inspección de vidrio - Caso 2: Inspector promedio.

 Si el inspector es promedio ⎯ni conservador ni arriesgado⎯, la probabilidad de éxitos es aproximadamente igual a la probabilidad de rechazos correctos (figura 7.3b). Las curvas se intersecan simétricamente, lo que da como resultado los mismos valores de ordenada y un valor de 1.0 para beta.

martes, 23 de febrero de 2021

Teoría de la detección de señales aplicada a la inspección de vidrio - Caso I: Inspector conservador

 Un inspector conservador establece el criterio alejado hacia la derecha (figura 7.3a). En dicha situación, la probabilidad de éxitos (diciendo sí a la señal del vidrio bueno) es baja (por ejemplo, de 0.30). La probabilidad de falsas alarmas (diciendo sí al ruido del vidrio defectuoso) es aún menor (por ejemplo, de 0.05). Beta se determina mediante la relación entre las ordenadas de la curva de la señal y la curva de ruido en el criterio. La ordenada de una curva normal estándar es


En el caso de la curva de señal, una probabilidad de 0.30 arroja una z de 0.524 y una ordenada de 0.348. En el caso de la curva de ruido, la probabilidad de 0.05 da una z de 1.645 y una ordenada de 0.103. Beta, entonces, es igual a 3.38 (0.348/0.103). Observe que la probabilidad de éxitos y fracasos es igual a 1.0 (es decir, 0.30 + 0.70 = 1.0). Lo mismo es válido en el caso de las falsas alarmas y los rechazos correctos.

domingo, 14 de febrero de 2021

EJECUCIÓN DE LA RESPUESTA Parte 1

La ejecución de la respuesta depende fundamentalmente del movimiento humano. En el capítulo 4 se pueden encontrar más detalles acerca del sistema músculo-esquelético, el control motor y el trabajo manual. Observe que la Tarea de golpes de Fitts (vea la fi gura 7.7) es una simple extensión de la ley de Hick-Hyman respecto al movimiento y también un ejemplo de un compromiso velocidad-precisión con relación al tamaño del tiempo del objetivo y del movimiento. Las aplicaciones específi cas de las respuestas respecto a los controles y a la operación de las máquinas y otros equipos se estudian en el capítulo 5.

martes, 9 de febrero de 2021

TOMA DE DECISIONES Y SELECCIÓN DE LA RESPUESTA Parte 4

 Los tiempos de reacción a la elección general también varían de manera considerable debido a una gran cantidad de factores. A medida que crece la compatibilidad (vea también la sección 5.3) entre el estímulo y la respuesta, la respuesta será más rápida. A medida que hay más práctica, la respuesta será más rápida. Sin embargo, a medida que el operador trate de responder más rápido, será mayor el número de errores. De manera similar, si existe un requisito que establezca una presión muy elevada (por ejemplo, en el control del tráfi co aéreo), el tiempo de respuesta se extenderá. 

A esta relación inversa se le conoce como compromiso velocidad-precisión.

El uso de dimensiones múltiples, otra forma de redundancia, puede también reducir el tiempo de respuesta en la toma de decisiones; o, de forma contraria, si hay información en confl icto, el tiempo de respuesta va a ser más extenso. Un ejemplo clásico es la Tarea color-palabra de Stroop (Stroop, 1935), en la cual se le pide al sujeto que lea una serie de palabras que expresan colores lo más rápido que pueda. En el caso de redundancia de controles, si se le muestra tinta roja y el operador emite la palabra rojo, el sujeto emitirá una respuesta rápida. En el caso confl ictivo, si se le muestran las letras con tinta roja y el operador emite la palabra azul, el tiempo de respuesta se ampliará debido a confl ictos semánticos y visuales.

domingo, 7 de febrero de 2021

TOMA DE DECISIONES Y SELECCIÓN DE LA RESPUESTA Parte 3

 Además, las teorías actuales acerca de la toma de decisiones se centran alrededor de la conciencia situacional, la cual es una evaluación de todas las claves que se reciben del ambiente reinante.

Requiere de la integración de las claves o de la información en representaciones mentales que varían desde un esquema simple hasta modelos mentales complejos. Para mejorar la conciencia situacional, es necesario entrenar a los operadores para reconocer y considerar las claves apropiadas, encontrar inconsistencias dentro de las claves de la situación y analizar y resolver cualquier confl icto que afecte las claves o la situación. Las ayudas para la toma de decisiones, como las tablas simples de decisión (que se analizan en el capítulo 9) o sistemas expertos más complejos pueden ayudar en el proceso de la toma de decisiones. Asimismo, el despliegue de claves importantes, la eliminación de claves indeseables y el uso de técnicas espaciales y la integración de despliegues también pueden ser útiles en este proceso. Algunas de estas técnicas se analizarán en la sección titulada modalidades de despliegue.

La velocidad y difi cultad de la toma de decisiones y la selección de respuestas, como se analizó anteriormente, están infl uenciadas por muchos factores. Por lo general, los intentos por cuantificar este proceso se realizan a través de un experimento elección-tiempo de reacción, en el cual el operador debe responder a varios estímulos con las respuestas apropiadas (vea la fi gura 7.5a). Esto puede considerarse como la toma de decisiones simple y, con base en el sistema de procesamiento de información del ser humano, el tiempo de respuesta debe aumentar a medida que el número de estímulos alternos se incremente. La respuesta es no lineal (vea la fi gura 7.5b), pero cuando la complejidad de la decisión se cuantifi ca en términos de la cantidad de información que contiene en bits, la respuesta se hace lineal y se conoce como ley Hick-Hyman (Hick, 1952; Hyman, 1953; vea la fi gura 7.5c)



Observe que cuando sólo existe una opción (por ejemplo, cuando aparezca la luz, presione el botón), H = 0 y el tiempo de respuesta es igual a la intercepción. Esto se conoce como el tiempo de reacción simple, el cual puede variar en función al tipo de estímulo (los tiempos de reacción de la audición son de alrededor de 40 ms más rápidos que los tiempos de reacción visual), la intensidad del estímulo y el estado de preparación de la señal.