domingo, 31 de enero de 2021

Teoría de la detección de señales aplicada a la inspección de vidrio

 Una buena aplicación de la teoría de detección de señales fue detallada por Drury y Addison (1973) en la inspección visual del vidrio. La inspección se desarrolló en dos etapas: 1) la inspección general de 100% en la que cada artículo era aceptado o rechazado y 2) una inspección muestral con la ayuda de examinadores especiales quienes reexaminaban los resultados anteriores y suministraban retroalimentación a los inspectores generales. Con base en la calidad de los artículos que se inspeccionaban, una parte estaban bien y los demás estaban defectuosos. El inspector general sólo pudo tomar dos decisiones: aceptar o rechazar. Las respuestas apropiadas podrían ser aceptar un artículo bueno (éxito) y rechazar uno defectuoso (corregir el rechazo). Sin embargo, algunos artículos buenos podrían ser rechazados (fracasos) y algunos artículos defectuosos podrían ser aceptados (falsas alarmas).


Considere cuatro casos diferentes con condiciones variables.

sábado, 30 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - MEMORIA Parte 3

 Algunas recomendaciones para reducir errores en las tareas que requieren el uso de la memoria de trabajo (Wickens, Gordon y Liu, 1997) son:

■ Minimizar la carga de memoria en términos de capacidad y del tiempo para conservar el recuerdo.

■ Utilizar la fragmentación, especialmente en términos de las secuencias con signifi cado y el uso de letras respecto a los números (por ejemplo, el uso de palabras o siglas en lugar de números en el caso de números telefónicos libres de pago como, por ejemplo, 1-800-CTD-HELP).

■ Mantenga los fragmentos de tamaño reducido de no más de tres o cuatro caracteres de naturaleza arbitraria.

■ Evite mezclar números con letras (es decir, los fragmentos deben contener caracteres similares).

■ Minimice la confusión que surge de propiciar caracteres con sonidos similares (por ejemplo, las letras D, P y T se confunden fácilmente, contrariamente a lo que sucede con las letras J, F y R).

La información de la memoria de trabajo puede transferirse a una memoria de largo plazo en caso de que se necesitara para su uso posterior. Ésta podría ser información relacionada al conocimiento general en la memoria semántica o información acerca de eventos específi cos en la vida de una persona en la forma de memoria de eventos. Dicha transferencia deberá llevarse a cabo de una manera ordenada de tal forma que se puedan recuperar fácilmente los datos en un momento posterior mediante un proceso que conocemos con el nombre de aprendizaje. El proceso de recuperación de información es el enlace débil y puede ser facilitado mediante la activación frecuente de esa ruta de la memoria (por ejemplo, un número del seguro social o telefónico que se utiliza todos los días) y mediante el uso de asociaciones con el conocimiento adquirido con anterioridad. 

Dichas asociaciones deben ser concretas en lugar de abstractas y llenas de signifi cado para el usuario que utiliza sus expectativas y estereotipos. Por ejemplo, el nombre John Brown puede asociarse con la imagen de una casa café.

Si existe una falta de asociaciones claras y bien organizadas, el proceso puede realizarse de manera artifi cial en la forma de reglas mnemotécnicas ⎯una sigla o una frase⎯, cuyas letras representan una serie de caracteres. Por ejemplo, el código de colores de las resistencias (negro, café, rojo, naranja, amarillo, verde, azul, violeta, gris, blanco) puede recordarse a partir de las primeras letras de cada palabra en la expresión “big brown rabbits often yield great big vocal groans when gingerly slapped”. La estandarización de procedimientos o el uso de las ayudas de la memoria (signos o notas) en procedimientos complejos también ayudan mediante la reducción de la carga en la memoria de largo plazo. Desafortunadamente, la memoria de largo plazo decae de manera exponencial, y su reducción es más signifi cativa en los primeros días. Debido a esto, la efi cacia de los programas de entrenamiento no debe evaluarse inmediatamente después de su impartición.

jueves, 28 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - MEMORIA Parte 2

 El límite superior de la capacidad de la memoria de trabajo es de aproximadamente 7 ± 2 números, a lo cual se le conoce a menudo como la regla de Miller en honor al psicólogo que la defi nió (Miller, 1956). Por ejemplo, recordar los 11 dígitos 12125551212 sería muy difícil si no es que imposible. La capacidad de recordar puede mejorarse mediante la fragmentación, es decir, el agrupamiento de números similares. Cuando los números que se mencionaron con anterioridad se agrupan como 1-212-555-1212, se pueden recordar mucho más fácilmente como tres grupos (el 1 es el estándar para llamar de larga distancia). De manera similar, mediante el ensayo o la repetición mental de los números, lo cual consume más recursos adicionales de atención (vea la fi gura 7.1) de la memoria de trabajo, se puede mejorar la capacidad de recordar.

La memoria de trabajo se deteriora muy rápido, a pesar del ensayo o el reciclado en serie de los números que se quieren recordar. A medida que haya más números en la memoria de trabajo, tomará más tiempo reciclarlos y será mayor la probabilidad de que se pierdan uno o más de ellos. Se ha calculado que la vida media del almacenamiento en memoria de tres números es de 7 segundos. 

Lo anterior se puede demostrar fácilmente presentando a un sujeto tres números aleatorios (por ejemplo, 5 3 6). Después de contar hacia atrás 7 segundos con el fi n de evitar el ensayo, la mayoría de las personas han olvidado al menos un número, si no es que dos.


domingo, 24 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - MEMORIA Parte 1

Una vez que el estímulo ha sido codifi cado de forma sensorial, éste va a la memoria de trabajo, uno de los tres componentes del sistema humano de la memoria. Los otros dos son el almacén sensorial y la memoria de largo plazo. Cada canal sensorial cuenta con un mecanismo de almacenamiento temporal que prolonga el estímulo para que pueda codifi carse correctamente. Este almacenamiento es muy breve, del orden de 1 o 2 segundos, lo cual depende del canal sensorial, antes de que la representación del estímulo desaparezca. También está muy automatizado, en el sentido de que su mantenimiento no requiere de mucha atención. Por otro lado, puede hacerse muy poco para conservar este almacenamiento o aumentar la longitud del lapso que se considere. Observe también en la figura 7.1 que, a pesar de que puede haber una gran cantidad de estímulos, lo cual podría representarse en el orden de millones de bits de información ingresando al almacén sensorial, en realidad sólo una porción muy pequeña de dicha información se codifi ca y envía a la memoria de trabajo. Contrariamente a la memoria de largo plazo, la memoria de trabajo representa un medio de almacenamiento temporal de información o de conservarla activa mientras es procesada para obtener una respuesta. Por lo tanto, a veces se le conoce como memoria de corto plazo. Buscar un número telefónico en el directorio y retenerlo hasta que éste haya sido marcado y encontrar un código de procesamiento en una lista y teclearlo en el tablero de control de una máquina representan buenos ejemplos de la memoria de trabajo. La memoria de trabajo tiene límites en cuanto a la cantidad de información y la longitud del tiempo que pueden conservarse los datos.

viernes, 22 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - TEORÍA DE LA PERCEPCIÓN Y DE LA DETECCIÓN DE SEÑALES Parte 3

 Relacionado con el criterio de respuesta se encuentra la cantidad beta. Numéricamente, beta es la relación entre la altura de las dos curvas (señal a ruido) de la fi gura 7.2 en el punto de criterio en cuestión. Si el criterio se desplaza hacia la izquierda, beta disminuye cuando aumentan los éxitos, pero a expensas de un correspondiente incremento de falsas alarmas. Este comportamiento por parte del observador se llama arriesgado. Si el criterio fuera en el punto donde se intersecan las dos curvas, beta sería igual a 1.0. Por otro lado, si el criterio se desplaza hacia la derecha, beta aumenta cuando disminuyen tanto los éxitos como las falsas alarmas. Este comportamiento de parte del observador se llama conservador.

El criterio de respuesta (y beta) pueden variar fácilmente en función del humor o fatiga del inspector visual. No sería extraño que el criterio se desplazara hacia la derecha y la tasa de fallas se incrementara en notablemente las tardes de los viernes poco antes de la salida. Observe que existirá una reducción correspondiente del número de éxitos debido a que las dos probabilidades suman 1.

De manera similar, las probabilidades de un rechazo correcto y falsas alarmas también suman 1. La variación en el criterio de respuesta se llama sesgo de la respuesta y pudo también haber cambiado con un conocimiento anterior o con cambios en la expectativa. Si se hubiese sabido que la máquina de soldar no estaba funcionando, probablemente el inspector hubiese desplazado el criterio hacia la izquierda, lo que incrementaría el número de éxitos. El criterio pudo haber cambiado debido a los costos o benefi cios asociados con los cuatro resultados. Si un lote de capacitores en particular hubiese sido enviado a la NASA para ser utilizados en el transbordador espacial, los costos de enviar componentes defectuosos hubiesen sido demasiado elevados y el inspector hubiese establecido un criterio muy bajo, lo que generaría muchos éxitos, pero también muchas falsas alarmas con los correspondientes elevados costos (por ejemplo, perder buenos productos). Por otro lado, si los capacitores estuvieran siendo utilizados en teléfonos celulares desechables de bajo costo, el inspector habría establecido un criterio muy elevado, lo que permitiría que muchos capacitores defectuosos pasaran a través del punto de verifi cación como fracasos.

Un segundo concepto de importancia en SDT es la sensibilidad o resolución del sistema sensorial. En SDT, la sensibilidad se mide como la separación entre las dos distribuciones que se muestran en la fi gura 7.2 y se identifi can como d ′. A medida que la separación sea mayor, mayor será la sensibilidad del observador y las respuestas correctas (más éxitos y más rechazos correctos) y se cometerá un menor número de errores (menos falsas alarmas y fracasos). En general, la sensibilidad mejorará a medida que haya más entrenamiento y vigilancia (por ejemplo, a través de descansos más frecuentes) por parte del inspector, una mejor iluminación en la estación de trabajo y la reducción de la velocidad de la presentación de las señales (la cual conlleva reducir la productividad). Otros factores que pueden ayudar a aumentar la sensibilidad están relacionados con el suministro de patrones visuales de partes defectuosas y la posibilidad de ofrecer un conocimiento de los resultados. Observe que ofrecer incentivos ayudará a incrementar el número de éxitos. Sin embargo, esto es particularmente válido debido a un desplazamiento del sesgo de la respuesta (no de un incremento de la sensibilidad) con un correspondiente aumento del número de falsas alarmas. De manera similar, introducir “señales falsas” para incrementar la vigilancia dará como resultado una mayor tendencia a desplazar el sesgo de la respuesta. En Green y Swets (1988) se puede encontrar más información acerca de la teoría de detección de señales.

martes, 19 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - TEORÍA DE LA PERCEPCIÓN Y DE LA DETECCIÓN DE SEÑALES Parte 2

 Puesto que el observador debe identifi car si la señal está presente y que sólo existan dos estados posibles (es decir, que la señal esté o no esté), hay un total de cuatro resultados posibles:

1. Éxito: lo cual dice que hay una señal cuando la señal está presente

2. Rechazo de la corrección: lo cual dice que no hay señal cuando la señal no está presente

3. Falsa alarma: lo cual dice que hay una señal cuando la señal no está presente

4. Fallo: lo cual dice que no hay señal cuando la señal está presente

Tanto la señal como el ruido pueden variar a través del tiempo, como ocurre en el caso de la mayoría de los procesos industriales. Por ejemplo, una máquina soldadora puede calentarse e inicialmente emitir una gota de gran tamaño sobre los capacitores o simplemente puede presentarse una variación “aleatoria” en los capacitores sin que se haya determinado una causa todavía. Por ello, tanto la señal como el ruido forman distribuciones de variación de la cantidad de soldadura de baja a alta, lo cual típicamente se modela como distribuciones normales superpuestas (fi gura 7.2). Observe que las distribuciones se superponen debido a que la excesiva soldadura sobre el cuerpo del capacitor puede provocar que se ponga en corto, lo cual provocará que el producto sea defectuoso (en este caso la señal). Sin embargo, si existe una cantidad excesiva de soldadura, pero principalmente en las puntas, es probable que el capacitor no se ponga en cortocircuito y, por lo tanto, se encuentre en buen estado (en este caso ruido). Debido al tamaño cada vez más pequeño de los productos electrónicos, los capacitores son menores que la cabeza de un alfi ler, por lo que la inspección visual de éstos no representa una tarea sencilla.

Cuando aparece un capacitor, el inspector necesita decidir si la cantidad de soldadura es demasiada o si debe rechazar el capacitor. Ya sea mediante instrucciones o sufi ciente práctica, el inspector realiza un juicio mental estándar, el cual se muestra en la figura 7.2 como una línea vertical y se llama criterio de respuesta. Si la cantidad de soldadura detectada, la cual ingresa al sistema visual como un alto nivel de estimulación sensorial, excede el criterio, el inspector debe anunciar que existe una señal. Por otro lado, si la cantidad que se detectó es pequeña, se recibirá un nivel más pequeño de estimulación sensorial, por debajo del criterio, y el inspector deberá anunciar que no hay señal.


domingo, 17 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO - TEORÍA DE LA PERCEPCIÓN Y DE LA DETECCIÓN DE SEÑALES Parte 1

 La percepción es la comparación entre la información que ingresa mediante el estímulo y el conocimiento almacenado para categorizar la información. La forma más básica de percepción es la detección simple, esto es, determinar si el estímulo está en realidad presente. El punto en cuestión incrementa su nivel de complejidad si se le pide a la persona que indique el tipo de estímulo o clase de estímulo a la cual pertenece y que posteriormente llegue al punto de la identifi cación y el reconocimiento mediante el uso de experiencias previas y asociaciones aprendidas. La relación subsiguiente entre la memoria de largo plazo y la codifi cación sensorial se muestra en la fi gura 7.1. Esta última es más compleja y puede explicarse en términos del análisis de características, la descomposición de objetos en formas geométricas o texto en palabras y secuencias de caracteres y, simultáneamente, de procesamiento de arriba hacia abajo o viceversa para reducir la cantidad de información que ingresa a la unidad de procesamiento central. Conceptualmente, el procesamiento de arriba hacia abajo se maneja mediante el uso de conceptos de alto nivel para procesar características perceptuales de bajo nivel, mientras que el procesamiento de abajo hacia arriba es operado a través de datos y guiado por características sensoriales.

La parte de detección de la codifi cación sensorial puede modelarse o, en el caso de tareas muy sencillas, cuantifi carse a través de la teoría de la detección de señales (SDT). El concepto fundamental del SDT es que, en cualquier situación, un observador necesita identifi car una señal (es decir, saber si está presente o no lo está) del ruido confuso. Por ejemplo, un inspector de calidad de una operación electrónica debe identifi car y eliminar los capacitores de circuitos defectuosos de los capacitores que están en buen estado que se utilizan en el ensamble de tarjetas de circuito impreso.

Los capacitores defectuosos representan la señal, la cual podría identifi carse por una cantidad excesiva de soldadura que genera un cortocircuito en el capacitor. En este caso, los capacitores en buen estado podrían considerarse ruido. Observe que se podría invertir el proceso de decisión fácilmente considerando que los buenos capacitores representaran la señal y los defectuosos el ruido. Lo anterior probablemente dependería de las proporciones relativas de cada uno. 


sábado, 16 de enero de 2021

MODELO DE PROCESAMIENTO DE INFORMACIÓN EN EL SER HUMANO

Se ha propuesto un gran número de modelos para explicar la forma en que las personas procesamos la información. La mayoría de estos modelos consisten en cajas negras (debido a que la información está relativamente incompleta) que representan las diferentes etapas del procesamiento. La figura 7.1 presenta uno de dichos modelos, el cual consta de cuatro etapas o componentes principales: percepción, selección de la decisión y la respuesta, ejecución de la respuesta, memoria y recursos de atención distribuidos en las diferentes etapas. El componente de la toma de decisiones, cuando se combina con la memoria de trabajo y la de largo plazo, puede considerarse como la unidad de procesamiento central mientras que el almacén sensorial es una memoria muy transitoria y se ubica en la etapa de entrada (Wickens, Gordon y Liu, 1997).

miércoles, 13 de enero de 2021

Diseño del trabajo cognitivo - TEORÍA DE LA INFORMACIÓN Parte 5

 Un ejemplo interesante se relaciona con el uso del idioma inglés. Hay 26 letras en el alfabeto (de la A a la Z) con un contenido teórico de información de una letra seleccionada al azar de 4.7 bits (log2 26 = 4.7). Evidentemente, cuando se combinan las letras para formar palabras, puede estar presente una cantidad de información signifi cativamente mayor. Sin embargo, existe una reducción sustancial de la cantidad de información que puede presentarse en realidad debido a que las probabilidades de ocurrencia son diferentes. Por ejemplo, las letras s, t y e son mucho más comunes de encontrar que la q, x y z. Se ha estimado que la redundancia del idioma inglés es de 68% (Sanders y McCormick, 1993). Por otro lado, la redundancia tiene algunas ventajas importantes respecto al diseño de pantallas y a la presentación de la información a los usuarios, temas que se analizarán posteriormente.

Un concepto final relacionado es el ancho de banda o capacidad de un canal, esto es, la velocidad máxima de procesamiento de información de un determinado canal de comunicaciones. En términos de un operador humano, el ancho de banda de las tareas de procesamiento motoras podría ser tan bajo como de 6 a 7 bits/s o tan alto como de 50 bits/s en el caso de la comunicación de voz.

Desde el punto de vista del almacenamiento sensorial sólo del oído (es decir, que la información no llegue a la etapa de la toma de decisiones), el ancho de banda se aproxima a 10 000 bits/s (Sanders y McCormick, 1993). Este último valor es mucho mayor que la cantidad real de información que es procesada por el cerebro en ese tiempo debido a que la mayor parte de la información que reciben nuestros sentidos es eliminada antes de llegar al cerebro.

lunes, 11 de enero de 2021

Diseño del trabajo cognitivo - TEORÍA DE LA INFORMACIÓN Parte 4

Observe que la cantidad de información (0.469) que contiene una moneda balanceada es menor a la que contiene una moneda desbalanceada (1.0). La cantidad máxima de información se obtiene siempre y cuando las probabilidades sean equiprobables. Esto se debe a que, a medida que una alternativa se hace más probable, contiene menor cantidad de información (es decir, considere la luz indicadora del motor al arrancar el automóvil). Lo anterior nos lleva al concepto de redundancia y la reducción de información a partir de lo más posible debido a la desigualdad de las probabilidades de ocurrencia. La redundancia puede expresarse como: