A medida que más se acerca la vibración a esta frecuencia, mayor será el efecto en ese sistema. En realidad, si las vibraciones forzadas inducen vibraciones de gran amplitud en el sistema, éste entra en resonancia. Lo anterior puede tener efectos dramáticos, por ejemplo, que los fuertes vientos provoquen que el puente Tacoma Narrows, de Washington oscile y, eventualmente, se colapse, o que soldados pierdan la cadencia en cruces de puentes. En la tabla 6.10 se proporcionan las frecuencias
de resonancia críticas en el caso de una persona sentada.
Por otro lado, las oscilaciones en el cuerpo o en cualquier otro sistema tienden a amortiguarse. Por lo tanto, en una postura parada, los músculos de las piernas amortiguan signifi cativamente las vibraciones. Las frecuencias superiores a 35 Hz son especialmente amortiguadas. Las amplitudes de las oscilaciones inducidas en los dedos se reducen 50% en las manos, 66% en los codos y 90% en los hombros.
La tolerancia humana a la vibración disminuye a medida que aumenta el tiempo de exposición.
Por lo tanto, el nivel de aceleración tolerable aumenta cuando disminuye el tiempo de exposición. Los límites de la vibración en todo el cuerpo han sido desarrollados por la Organización Internacional de Estándares (ISO) y el Instituto de Estándares Nacional Americano (ANSI) (ASA,1980) para los casos de instalaciones de transporte e industriales. Dichos estándares especifi can los límites en términos de aceleración, frecuencia y duración en tiempo (fi gura 6.17). Las líneas grafi cadas muestran los límites del parámetro fatiga/desempeño. Para obtener los límites de confort, los valores de la aceleración se dividen entre 3.15; para determinar los límites de seguridad, los valores se multiplican por 2. Desafortunadamente, no se han desarrollado límites para las manos y las extremidades superiores.
No hay comentarios:
Publicar un comentario